To cite this paper / Pentru a cita lucrarea: Petrisor AI, Ellis S, Decho AW (2001), Quantitative Analysis of Confocal Microscopy Images of Bacterial Biofilms Using Digital Images Processing Techniques, Biology Spring Symposium, March 30, 2001, Georgetown, SC, USA

Biology Spring Symposium - 2001

QUANTITATIVE ANALYSIS OF BACTERIAL BIOFILMS USING DIGITAL IMAGE TECHNIQUES

Alexandru I. Petrisor, MSPH; Susan Ellis, MSPH; and Alan W. Decho, PhD

Department of Environmental Health Sciences The Norman J. Arnold School of Public Health University of South Carolina, Columbia, SC

Background

- Biofilms are formed by bacterial colonies encapsulated in an extra-cellular polymeric substances matrix.
- Form in short time if environmental conditions are favorable.
- The study of biofilms is facilitated by advances in microscopy, such as the SCLM technique used in conjunction with analytical imaging, digital analysis, and semi-automated image processing.
- Various approaches were developed based on SCLM to assess the structure of biofilms and spatial variability within biofilms.

Our Study

- Scanning confocal laser microscopy is used to acquire digital images to assess the structure of biofilms and spatial variability within biofilms.
- Various substances are stained using specific biochemical markers such as the fluorescent lectin probes.
- Need to develop a tool to determine the volume occupied by bacteria in a certain region of the space and estimate of the number of bacteria.
- Use analytical imaging techniques, digital analysis, and semi-automated image processing.

Methodology

Use SCLM in conjunction with:

Digital image processing techniques

Remote-sensing techniques

Methodology (Continued)

Figure 1. Five Sections through a Biofilm, Taken at 2 µm Distance

Methodology (Continued)

- Determine the area occupied by bacteria using image processing techniques.
- Based on the area, determine the volume; various approximations may be used.

Example: V=d×∑A , where:

• A_i is the area occupied by bacteria within each of the p photos

d is the distance between the photos

If the average volume of a bacterium is known, then an estimation of the number of bacteria can be performed easily.

Applications

- Quantitative studies of biofilm formation and growth
- Quantitative studies of bacterial colonization
- Determination of enzymatic activity
- Quantitative studies of biofilm growth and decay
- Quantitative studies of the formation of dental plates
- Quantitative studies of pipe corrosion due to biofilm formation

Example

Dissertation: Cowen DJ, 1968

DISPERSION INDEX = 3.05 MILES ORIENTATION ANGLE = 104.79° N.W.

Example (continued)

Dissertation: Cowen DJ, 1968

Example (continued)

DELETED FIRMS FROM 1954 SAMPLE N=300

ORMENTATION ANGLE = 193.329 N W.

Dissertation: Cowen DJ, 1968

Final Remark

The objective of this project is to apply the approach presented in the previous example to the study of phenomena related to bacterial biofilms.

Any Questions?